Examples
Open VKL ships with two example applications.
vklExamples[CPU,GPU]
is an interactive application which
allows you to experiment with supported volume types and algorithms.
vklTutorial[CPU,GPU]
is a small and instructive
program showing how to use the Open VKL API.
vklExamples[CPU,GPU]
The main purpose of vklExamples[CPU,GPU]
is to demonstrate
volume types, algorithms, and other features of Open VKL from a small,
self-contained program.
vklExamples[CPU,GPU]
features a number of command line options, but
most of these have GUI counterparts for interactive exploration. Please
run vklExamples[CPU,GPU] --help
for a full list.

vklTutorial[CPU,GPU]
For quick reference, the contents of examples/vklTutorialCPU.c are shown below. vklTutorialGPU.cpp covers details of GPU usage, and is browsable directly on GitHub.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 | #include <openvkl/openvkl.h> #include <openvkl/device/openvkl.h> #include <stdio.h> #if defined(_MSC_VER) #include <malloc.h> // _malloca #include <windows.h> // Sleep #endif void demoScalarAPI(VKLDevice device, VKLVolume volume) { printf("demo of 1-wide API\n"); VKLSampler sampler = vklNewSampler(volume); vklCommit(sampler); // bounding box vkl_box3f bbox = vklGetBoundingBox(volume); printf("\tbounding box\n"); printf("\t\tlower = %f %f %f\n", bbox.lower.x, bbox.lower.y, bbox.lower.z); printf("\t\tupper = %f %f %f\n\n", bbox.upper.x, bbox.upper.y, bbox.upper.z); // number of attributes unsigned int numAttributes = vklGetNumAttributes(volume); printf("\tnum attributes = %d\n\n", numAttributes); // value range for all attributes for (unsigned int i = 0; i < numAttributes; i++) { vkl_range1f valueRange = vklGetValueRange(volume, i); printf("\tvalue range (attribute %u) = (%f %f)\n", i, valueRange.lower, valueRange.upper); } // coordinate for sampling / gradients vkl_vec3f coord = {1.f, 2.f, 3.f}; printf("\n\tcoord = %f %f %f\n\n", coord.x, coord.y, coord.z); // sample, gradient (first attribute) unsigned int attributeIndex = 0; float time = 0.f; float sample = vklComputeSample(&sampler, &coord, attributeIndex, time); vkl_vec3f grad = vklComputeGradient(&sampler, &coord, attributeIndex, time); printf("\tsampling and gradient computation (first attribute)\n"); printf("\t\tsample = %f\n", sample); printf("\t\tgrad = %f %f %f\n\n", grad.x, grad.y, grad.z); // sample (multiple attributes) unsigned int M = 3; unsigned int attributeIndices[] = {0, 1, 2}; float samples[3]; vklComputeSampleM(&sampler, &coord, samples, M, attributeIndices, time); printf("\tsampling (multiple attributes)\n"); printf("\t\tsamples = %f %f %f\n\n", samples[0], samples[1], samples[2]); // interval iterator context setup vkl_range1f ranges[2] = {{10, 20}, {50, 75}}; int num_ranges = 2; VKLData rangesData = vklNewData(device, num_ranges, VKL_BOX1F, ranges, VKL_DATA_DEFAULT, 0); VKLIntervalIteratorContext intervalContext = vklNewIntervalIteratorContext(sampler); vklSetInt(intervalContext, "attributeIndex", attributeIndex); vklSetData(intervalContext, "valueRanges", rangesData); vklRelease(rangesData); vklCommit(intervalContext); // hit iterator context setup float values[2] = {32, 96}; int num_values = 2; VKLData valuesData = vklNewData(device, num_values, VKL_FLOAT, values, VKL_DATA_DEFAULT, 0); VKLHitIteratorContext hitContext = vklNewHitIteratorContext(sampler); vklSetInt(hitContext, "attributeIndex", attributeIndex); vklSetData(hitContext, "values", valuesData); vklRelease(valuesData); vklCommit(hitContext); // ray definition for iterators vkl_vec3f rayOrigin = {0, 1, 1}; vkl_vec3f rayDirection = {1, 0, 0}; vkl_range1f rayTRange = {0, 200}; printf("\trayOrigin = %f %f %f\n", rayOrigin.x, rayOrigin.y, rayOrigin.z); printf("\trayDirection = %f %f %f\n", rayDirection.x, rayDirection.y, rayDirection.z); printf("\trayTRange = %f %f\n", rayTRange.lower, rayTRange.upper); // interval iteration. This is scoped { // Note: buffer will cease to exist at the end of this scope. #if defined(_MSC_VER) // MSVC does not support variable length arrays, but provides a // safer version of alloca. char *buffer = _malloca(vklGetIntervalIteratorSize(&intervalContext)); #else char buffer[vklGetIntervalIteratorSize(&intervalContext)]; #endif VKLIntervalIterator intervalIterator = vklInitIntervalIterator( &intervalContext, &rayOrigin, &rayDirection, &rayTRange, time, buffer); printf("\n\tinterval iterator for value ranges {%f %f} {%f %f}\n", ranges[0].lower, ranges[0].upper, ranges[1].lower, ranges[1].upper); for (;;) { VKLInterval interval; int result = vklIterateInterval(intervalIterator, &interval); if (!result) break; printf( "\t\ttRange (%f %f)\n\t\tvalueRange (%f %f)\n\t\tnominalDeltaT " "%f\n\n", interval.tRange.lower, interval.tRange.upper, interval.valueRange.lower, interval.valueRange.upper, interval.nominalDeltaT); } #if defined(_MSC_VER) _freea(buffer); #endif } // hit iteration { #if defined(_MSC_VER) // MSVC does not support variable length arrays, but provides a // safer version of alloca. char *buffer = _malloca(vklGetHitIteratorSize(&hitContext)); #else char buffer[vklGetHitIteratorSize(&hitContext)]; #endif VKLHitIterator hitIterator = vklInitHitIterator( &hitContext, &rayOrigin, &rayDirection, &rayTRange, time, buffer); printf("\thit iterator for values %f %f\n", values[0], values[1]); for (;;) { VKLHit hit; int result = vklIterateHit(hitIterator, &hit); if (!result) break; printf("\t\tt %f\n\t\tsample %f\n\t\tepsilon %f\n\n", hit.t, hit.sample, hit.epsilon); } #if defined(_MSC_VER) _freea(buffer); #endif } vklRelease(hitContext); vklRelease(intervalContext); vklRelease(sampler); } void demoVectorAPI(VKLVolume volume) { printf("demo of 4-wide API (8- and 16- follow the same pattern)\n"); VKLSampler sampler = vklNewSampler(volume); vklCommit(sampler); // structure-of-array layout vkl_vvec3f4 coord4; int valid[4]; for (int i = 0; i < 4; i++) { coord4.x[i] = i * 3 + 0; coord4.y[i] = i * 3 + 1; coord4.z[i] = i * 3 + 2; valid[i] = -1; // valid mask: 0 = not valid, -1 = valid } for (int i = 0; i < 4; i++) { printf( "\tcoord[%d] = %f %f %f\n", i, coord4.x[i], coord4.y[i], coord4.z[i]); } // sample, gradient (first attribute) unsigned int attributeIndex = 0; float time4[4] = {0.f}; float sample4[4]; vkl_vvec3f4 grad4; vklComputeSample4(valid, &sampler, &coord4, sample4, attributeIndex, time4); vklComputeGradient4(valid, &sampler, &coord4, &grad4, attributeIndex, time4); printf("\n\tsampling and gradient computation (first attribute)\n"); for (int i = 0; i < 4; i++) { printf("\t\tsample[%d] = %f\n", i, sample4[i]); printf( "\t\tgrad[%d] = %f %f %f\n", i, grad4.x[i], grad4.y[i], grad4.z[i]); } // sample (multiple attributes) unsigned int M = 3; unsigned int attributeIndices[] = {0, 1, 2}; float samples[3 * 4]; vklComputeSampleM4( valid, &sampler, &coord4, samples, M, attributeIndices, time4); printf("\n\tsampling (multiple attributes)\n"); printf("\t\tsamples = "); for (unsigned int j = 0; j < M; j++) { printf("%f %f %f %f\n", samples[j * 4 + 0], samples[j * 4 + 1], samples[j * 4 + 2], samples[j * 4 + 3]); printf("\t\t "); } printf("\n"); vklRelease(sampler); } void demoStreamAPI(VKLVolume volume) { printf("demo of stream API\n"); VKLSampler sampler = vklNewSampler(volume); vklCommit(sampler); // array-of-structure layout; arbitrary stream lengths are supported vkl_vec3f coord[5]; for (int i = 0; i < 5; i++) { coord[i].x = i * 3 + 0; coord[i].y = i * 3 + 1; coord[i].z = i * 3 + 2; } for (int i = 0; i < 5; i++) { printf("\tcoord[%d] = %f %f %f\n", i, coord[i].x, coord[i].y, coord[i].z); } // sample, gradient (first attribute) printf("\n\tsampling and gradient computation (first attribute)\n"); unsigned int attributeIndex = 0; float time[5] = {0.f}; float sample[5]; vkl_vec3f grad[5]; vklComputeSampleN(&sampler, 5, coord, sample, attributeIndex, time); vklComputeGradientN(&sampler, 5, coord, grad, attributeIndex, time); for (int i = 0; i < 5; i++) { printf("\t\tsample[%d] = %f\n", i, sample[i]); printf("\t\tgrad[%d] = %f %f %f\n", i, grad[i].x, grad[i].y, grad[i].z); } // sample (multiple attributes) unsigned int M = 3; unsigned int attributeIndices[] = {0, 1, 2}; float samples[3 * 5]; vklComputeSampleMN(&sampler, 5, coord, samples, M, attributeIndices, time); printf("\n\tsampling (multiple attributes)\n"); printf("\t\tsamples = "); for (int i = 0; i < 5; i++) { for (unsigned int j = 0; j < M; j++) { printf("%f ", samples[i * M + j]); } printf("\n\t\t "); } printf("\n"); vklRelease(sampler); } int main() { vklInit(); VKLDevice device = vklNewDevice("cpu"); vklCommitDevice(device); const int dimensions[] = {128, 128, 128}; const int numVoxels = dimensions[0] * dimensions[1] * dimensions[2]; const int numAttributes = 3; VKLVolume volume = vklNewVolume(device, "structuredRegular"); vklSetVec3i( volume, "dimensions", dimensions[0], dimensions[1], dimensions[2]); vklSetVec3f(volume, "gridOrigin", 0, 0, 0); vklSetVec3f(volume, "gridSpacing", 1, 1, 1); float *voxels = malloc(numVoxels * sizeof(float)); if (!voxels) { printf("failed to allocate voxel memory!\n"); return 1; } // volume attribute 0: x-grad for (int k = 0; k < dimensions[2]; k++) for (int j = 0; j < dimensions[1]; j++) for (int i = 0; i < dimensions[0]; i++) voxels[k * dimensions[0] * dimensions[1] + j * dimensions[2] + i] = (float)i; VKLData data0 = vklNewData(device, numVoxels, VKL_FLOAT, voxels, VKL_DATA_DEFAULT, 0); // volume attribute 1: y-grad for (int k = 0; k < dimensions[2]; k++) for (int j = 0; j < dimensions[1]; j++) for (int i = 0; i < dimensions[0]; i++) voxels[k * dimensions[0] * dimensions[1] + j * dimensions[2] + i] = (float)j; VKLData data1 = vklNewData(device, numVoxels, VKL_FLOAT, voxels, VKL_DATA_DEFAULT, 0); // volume attribute 2: z-grad for (int k = 0; k < dimensions[2]; k++) for (int j = 0; j < dimensions[1]; j++) for (int i = 0; i < dimensions[0]; i++) voxels[k * dimensions[0] * dimensions[1] + j * dimensions[2] + i] = (float)k; VKLData data2 = vklNewData(device, numVoxels, VKL_FLOAT, voxels, VKL_DATA_DEFAULT, 0); VKLData attributes[] = {data0, data1, data2}; VKLData attributesData = vklNewData( device, numAttributes, VKL_DATA, attributes, VKL_DATA_DEFAULT, 0); vklRelease(data0); vklRelease(data1); vklRelease(data2); vklSetData(volume, "data", attributesData); vklRelease(attributesData); vklCommit(volume); demoScalarAPI(device, volume); demoVectorAPI(volume); demoStreamAPI(volume); vklRelease(volume); vklReleaseDevice(device); free(voxels); printf("complete.\n"); #if defined(_MSC_VER) // On Windows, sleep for a few seconds so the terminal window doesn't close // immediately. Sleep(3000); #endif return 0; } |